Given:
→a=ˆi−ˆk,→b=xˆi+ˆj+(1−x)ˆk,→c=yˆi+xˆj+(1+x−y)ˆk
Form the matrix:
M=[1xy01x−11−x1+x−y]
Find the determinant:
det(M)=|1xy01x−11−x1+x−y|=1
Since the determinant is constant and non-zero, the vectors are linearly independent.
The matrix does not depend on x or y
Given: →a,→b are unit vectors and
2→a+→b=3
Take magnitude on both sides:
|2→a+→b|=3⇒|2→a+→b|2=9
Use identity:
|2→a+→b|2=4|→a|2+|→b|2+4(→a⋅→b)=4+1+4(→a⋅→b)=5+4(→a⋅→b)
Set equal to 9:
5+4(→a⋅→b)=9⇒→a⋅→b=1⇒cosθ=1⇒θ=0∘
Given:
∫f(x)dx=g(x)
Required: ∫x5f(x3)dx
Use substitution:
Let u=x3⇒du=3x2dx⇒dx=du3x2
Now rewrite the integral:
∫x5f(x3)dx=∫x5f(u)⋅du3x2=13∫x3f(u)du
But x3=u, so:
13∫uf(u)du
Now integrate by parts or use the identity:
∫uf(u)du=ug(u)−∫g(u)du
Final answer:
∫x5f(x3)dx=13[x3g(x3)−∫g(x3)⋅3x2dx]=x3g(x3)−∫x2g(x3)dx
∫x5f(x3)dx=x3g(x3)−∫x2g(x3)dx
Given:
limx→1x4−1x−1=limx→kx3−k2x2−k2
LHS using derivative:
limx→1x4−1x−1=ddx(x4)|x=1=4x3|x=1=4
RHS using DL logic:
limx→kx3−k2x2−k2≈3k2(x−k)2k(x−k)=3k2
Equating both sides:
3k2=4⇒k=83
k=83
Given:
We are to find:
Probability that no black ball is selected when 3 balls are drawn at random.
Step 1: Total number of ways to choose any 3 balls from 12:
\text{Total ways} = \binom{12}{3} = 220
Step 2: Ways to choose 3 balls such that no black ball is chosen:
Only yellow and green balls are allowed ⇒ Total = 5 (yellow) + 3 (green) = 8
\text{Favorable ways} = \binom{8}{3} = 56
Step 3: Probability
P(\text{no black ball}) = \frac{\text{Favorable outcomes}}{\text{Total outcomes}} = \frac{56}{220} = \frac{14}{55}
\boxed{\text{Probability} = \frac{14}{55}}
Given:
e^x \sin x = 1 has two real roots → say x_1 and x_2
Apply Rolle’s Theorem:
Since f(x) = e^x \sin x is continuous and differentiable, and f(x_1) = f(x_2) , ⇒ There exists c \in (x_1, x_2) such that f'(c) = 0
Compute:
f'(x) = e^x(\sin x + \cos x) = 0 \Rightarrow \tan x = -1 At this point, e^x \cos x = -1
\boxed{\text{At least one root}}
Step 1: Define a helper polynomial:
g(x) = f(x) - (x + 1)
Given: f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 5 \Rightarrow g(1) = g(2) = g(3) = g(4) = 0
So, g(x) = A(x - 1)(x - 2)(x - 3)(x - 4) \quad \Rightarrow \quad f(x) = A(x - 1)(x - 2)(x - 3)(x - 4) + (x + 1)
Step 2: Use f(0) = 25 to find A:
f(0) = A(-1)(-2)(-3)(-4) + (0 + 1) = 24A + 1 = 25 \Rightarrow A = 1
Step 3: Compute f(5) :
f(5) = (5 - 1)(5 - 2)(5 - 3)(5 - 4) + (5 + 1) = 4 \cdot 3 \cdot 2 \cdot 1 + 6 = 24 + 6 = \boxed{30}
✅ Final Answer: \boxed{f(5) = 30}
Step 1: Let’s define the function:
f(x) = (x - 1)^2 (x + 1)^3
Step 2: Take derivative to find critical points
Use product rule:
Let u = (x - 1)^2 , v = (x + 1)^3
f'(x) = u'v + uv' = 2(x - 1)(x + 1)^3 + (x - 1)^2 \cdot 3(x + 1)^2
f'(x) = (x - 1)(x + 1)^2 [2(x + 1) + 3(x - 1)]
f'(x) = (x - 1)(x + 1)^2 (5x - 1)
Step 3: Find critical points
Set f'(x) = 0 : (x - 1)(x + 1)^2 (5x - 1) = 0 \Rightarrow x = 1,\ -1,\ \frac{1}{5}
Step 4: Evaluate f(x) at these points
f\left(\frac{1}{5}\right) = \frac{16}{25} \cdot \frac{216}{125} = \frac{3456}{3125}
Step 5: Compare with given form:
It is given that maximum value is \frac{3456}{3125} = 2^p \cdot 3^q / 3125
Factor 3456: 3456 = 2^7 \cdot 3^3 \Rightarrow \text{So } p = 7, \quad q = 3
✅ Final Answer: \boxed{(p, q) = (7,\ 3)}
Given Expression:
(1 + x)^{1000} + 2x(1 + x)^{999} + 3x^2(1 + x)^{998} + \cdots + 1001x^{1000}
This follows a known identity that simplifies the full expression to:
f(x) = (1 + x)^{1002}
Now: The coefficient of x^{50} in f(x) is:
\boxed{\binom{1002}{50}}
✅ Final Answer: \boxed{\binom{1002}{50}}
Given:
x_k = \cos\left(\frac{2\pi k}{n}\right) + i \sin\left(\frac{2\pi k}{n}\right) = e^{2\pi i k/n}
Required: Find: \sum_{k=1}^{n} x_k
This is the sum of all n^\text{th} roots of unity (from k = 1 to n ).
We know: \sum_{k=0}^{n-1} e^{2\pi i k/n} = 0 So shifting index from k = 1 to n just cycles the same roots: \sum_{k=1}^{n} e^{2\pi i k/n} = 0
✅ Final Answer: \boxed{0}
Step 1: \cos x is differentiable everywhere, but |\cos x| is not differentiable where \cos x = 0 .
Step 2: In the interval [-\pi, \pi] , we have:
\cos x = 0 \Rightarrow x = -\frac{\pi}{2},\ \frac{\pi}{2}
So f(x) = |\cos x| + 3 is not differentiable at these two points due to sharp turns.
✅ Final Answer: \boxed{2 \text{ points}}
Given: Point on parabola y^2 = 4a x is at distance 5a from focus (a, 0) .
Distance Equation:
(x - a)^2 + y^2 = 25a^2 \Rightarrow (x - a)^2 + 4a x = 25a^2 \Rightarrow x^2 + 2a x - 24a^2 = 0
Solving gives: x = 4a , y = 4a
✅ Final Answer: \boxed{(4a,\ 4a)}
Line: x + y - 1 = 0
Point 1: (3, 2) → Lies on the side where value is positive:
f(3, 2) = 3 + 2 - 1 = 4 > 0
Point 2: (\cos\theta, \sin\theta) lies on same side if: \cos\theta + \sin\theta > 1 Using identity: \cos\theta + \sin\theta = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \Rightarrow \sin\left(\theta + \frac{\pi}{4}\right) > \frac{1}{\sqrt{2}} So: \theta \in \left(0,\ \frac{\pi}{2}\right)
✅ Final Answer: \boxed{\theta \in \left(0,\ \frac{\pi}{2}\right)}
Given: A vector of magnitude 5 makes equal angles with x, y, and z axes.
To Find: Sum of magnitudes of projections on each axis.
Let angle with each axis be \alpha . Then, from direction cosine identity: \cos^2\alpha + \cos^2\alpha + \cos^2\alpha = 1 \Rightarrow 3\cos^2\alpha = 1 \Rightarrow \cos\alpha = \frac{1}{\sqrt{3}}
Projection on each axis: 5 \cdot \frac{1}{\sqrt{3}}
Sum = 3 \cdot \frac{5}{\sqrt{3}} = \frac{15}{\sqrt{3}} = \boxed{5\sqrt{3}}
✅ Final Answer: \boxed{5\sqrt{3}}
Given: One ball is transferred from Bag I to Bag II, and then a ball is drawn from Bag II and is black.
Goal: Find the probability that the transferred ball was red, given that a black ball was drawn.
Using Bayes' theorem: P(R|A) = \frac{P(R \cap A)}{P(A)} = \frac{\frac{3}{10} \cdot \frac{5}{10}}{\frac{3}{10} \cdot \frac{5}{10} + \frac{4}{10} \cdot \frac{6}{10} + \frac{3}{10} \cdot \frac{5}{10}} = \frac{15}{54} = \boxed{\frac{5}{18}}
✅ Final Answer: \boxed{\frac{5}{18}}
A force of 78 grams acts at the point (2,3,5). The direction ratios of the line of action being 2,2,1 . The magnitude of its moment about the line joining the origin to the point (12,3,4) is
Letters of the word QUEEN are E,E,N,Q,U
Words beginning with E (4!) = 24
Words beginning with N (4!/2!)=12
Words beginning with QE (3!) = 6
Words beginning with QN (3!/2!)= 3
Total words = 24+12+6+9=45
QUEEN is the next word and has rank 46th.
Not Available
Not Available right now
Not Available
Not Available
Not Available
Not Available
For the two circles x^2+y^2=16 and x^2+y^2-2y=0, there is/are
A particle P starts from the point
Step 1: Use ellipse definition
$PF_1 = \sqrt{(0 - 4)^2 + (0 - 3)^2}
= \sqrt{25}
= 5$
$PF_2 = \sqrt{(0 - 12)^2 + (0 - 5)^2}
= \sqrt{169}
= 13$
Total distance = 5 + 13 = 18 \Rightarrow 2a = 18 \Rightarrow a = 9
Step 2: Distance between the foci
2c = \sqrt{(12 - 4)^2 + (5 - 3)^2} = \sqrt{64 + 4} = \sqrt{68} \Rightarrow c = \sqrt{17}
Step 3: Find eccentricity
e = \dfrac{c}{a} = \dfrac{\sqrt{17}}{9}
✅ Final Answer: \boxed{\dfrac{\sqrt{17}}{9}}
If \Delta=a^2-(b-c)^2, where \Delta is the are of the triangle ABC, then tanA=
Step 1: One-one (injective) function means no two elements map to the same output.
We choose 3 different elements from 5 and assign them to 3 inputs in order.
So, total one-one functions = P(5,3) = 5 \times 4 \times 3 = 60
✅ Final Answer: \boxed{60}
Vectors:
Step 1: Volume = |\vec{a} \cdot (\vec{b} \times \vec{c})|
First compute \vec{b} \times \vec{c}:
\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix} = \hat{i}((-1)(-1) - (1)(2)) - \hat{j}((1)(-1) - (1)(1)) + \hat{k}((1)(2) - (-1)(1)) \\ = \hat{i}(1 - 2) - \hat{j}(-1 - 1) + \hat{k}(2 + 1) = -\hat{i} + 2\hat{j} + 3\hat{k}
Step 2: Compute dot product with \vec{a}:
\vec{a} \cdot (\vec{b} \times \vec{c}) = (m)(-1) + (1)(2) + (1)(3) = -m + 2 + 3 = -m + 5
Step 3: Volume = | -m + 5 | = 4
So, |-m + 5| = 4 \Rightarrow -m + 5 = \pm 4
✅ Final Answer: \boxed{m = 1 \text{ or } 9}
Condition: Vectors are coplanar ⟹ Scalar triple product = 0
\vec{a} \cdot (\vec{b} \times \vec{c}) = 0
Step 1: Use determinant:
\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} \lambda^2 & 1 & 1 \\ 1 & \lambda^2 & 1 \\ 1 & 1 & \lambda^2 \end{vmatrix}
Step 2: Expand the determinant:
= \lambda^2(\lambda^2 \cdot \lambda^2 - 1 \cdot 1) - 1(1 \cdot \lambda^2 - 1 \cdot 1) + 1(1 \cdot 1 - \lambda^2 \cdot 1) \\ = \lambda^2(\lambda^4 - 1) - (\lambda^2 - 1) + (1 - \lambda^2)
Simplify:
= \lambda^6 - \lambda^2 - \lambda^2 + 1 + 1 - \lambda^2 = \lambda^6 - 3\lambda^2 + 2
Step 3: Set scalar triple product to 0:
\lambda^6 - 3\lambda^2 + 2 = 0
Step 4: Let x = \lambda^2, then:
x^3 - 3x + 2 = 0
Factor:
x^3 - 3x + 2 = (x - 1)^2(x + 2)
So, \lambda^2 = 1 (double root), or \lambda^2 = -2 (discard as it's not real)
Thus, real values of \lambda are: \lambda = \pm1
✅ Final Answer: \boxed{2} distinct real values
We are asked to count permutations of bottles such that exactly 5 bottles go into their own numbered boxes.
Step 1: Choose 5 positions to be fixed points (i.e., bottle number matches box number).
Number of ways = \binom{9}{5}
Step 2: Remaining 4 positions must be a derangement (no bottle goes into its matching box).
Let D_4 be the number of derangements of 4 items.
D_4 = 9
Step 3: Total ways = \binom{9}{5} \times D_4 = 126 \times 9 = 1134
✅ Final Answer: \boxed{1134}
Step 1: Find midpoint of PQ
Midpoint = \left( \dfrac{1 + k}{2}, \dfrac{4 + 3}{2} \right) = \left( \dfrac{1 + k}{2}, \dfrac{7}{2} \right)
Step 2: Find slope of PQ
Slope of PQ = \dfrac{3 - 4}{k - 1} = \dfrac{-1}{k - 1}
Step 3: Slope of perpendicular bisector = negative reciprocal = k - 1
Step 4: Use point-slope form for perpendicular bisector:
y - \dfrac{7}{2} = (k - 1)\left(x - \dfrac{1 + k}{2}\right)
Step 5: Find y-intercept (put x = 0 )
y = \dfrac{7}{2} + (k - 1)\left( -\dfrac{1 + k}{2} \right)
y = \dfrac{7}{2} - (k - 1)\left( \dfrac{1 + k}{2} \right)
Given: y-intercept = -4, so:
\dfrac{7}{2} - \dfrac{(k - 1)(k + 1)}{2} = -4
Multiply both sides by 2:
7 - (k^2 - 1) = -8 \Rightarrow 7 - k^2 + 1 = -8 \Rightarrow 8 - k^2 = -8
\Rightarrow k^2 = 16 \Rightarrow k = \pm4
✅ Final Answer: \boxed{k = -4 \text{ or } 4}
W = |F| \cdot |D| \cdot \cos\theta
Given:
Step 1: Plug in the values:
W = 40 \cdot 3 \cdot \cos(60^\circ)
Step 2: Use \cos(60^\circ) = \frac{1}{2}
W = 40 \cdot 3 \cdot \frac{1}{2} = 60 \, \text{J}
✅ Final Answer: \boxed{60 \, \text{J}}
Married couple: 2 specific people among them
Total ways to choose 5 people from 9:
\text{Total} = \binom{9}{5} = 126
We fix the married couple (2 people), then choose 3 more from remaining 7:
\binom{7}{3} = 35
We remove both from the pool, then choose 5 from remaining 7:
\binom{7}{5} = \binom{7}{2} = 21
\text{Favorable} = 35 + 21 = 56
\text{Required Probability} = \frac{56}{126} = \frac{28}{63} = \frac{4}{9}
✅ Final Answer: \boxed{\dfrac{4}{9}}
\sin(4x) = \frac{1}{2}, \quad x \in (-9\pi,\ 3\pi)
Step 1: General solutions for \sin(θ) = \frac{1}{2}
θ = \frac{\pi}{6} + 2n\pi \quad \text{or} \quad θ = \frac{5\pi}{6} + 2n\pi
Let θ = 4x , so we get:
By checking all possible n values, we find:
✅ Final Answer: \boxed{48}
We want: Probability that exactly 2 recover out of 3.
P(X = r) = \binom{n}{r} p^r (1 - p)^{n - r} where n = 3, r = 2, p = 0.6
P(X = 2) = \binom{3}{2} (0.6)^2 (0.4)^1 = 3 \times 0.36 \times 0.4 = 0.432
✅ Final Answer: \boxed{0.432}
\text{Evaluate } \tan\left(\frac{\pi}{4} + \theta\right) \cdot \tan\left(\frac{3\pi}{4} + \theta\right)
\tan\left(A + B\right) = \frac{\tan A + \tan B}{1 - \tan A \tan B} But we don’t need expansion — use known angle values:
\tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan\theta}{1 - \tan\theta}
\tan\left(\frac{3\pi}{4} + \theta\right) = \frac{-1 + \tan\theta}{1 + \tan\theta}
\left(\frac{1 + \tan\theta}{1 - \tan\theta}\right) \cdot \left(\frac{-1 + \tan\theta}{1 + \tan\theta}\right)
Simplify:
= \frac{(1 + \tan\theta)(-1 + \tan\theta)}{(1 - \tan\theta)(1 + \tan\theta)} = \frac{(\tan^2\theta - 1)}{1 - \tan^2\theta} = \boxed{-1}
\boxed{-1}
\sin x = \sin y \quad \text{and} \quad \cos x = \cos y
\sin x = \sin y \Rightarrow x = y + 2n\pi \quad \text{or} \quad x = \pi - y + 2n\pi
\cos x = \cos y \Rightarrow x = y + 2m\pi \quad \text{or} \quad x = -y + 2m\pi
For both \sin x = \sin y and \cos x = \cos y to be true, the only consistent solution is:
x = y + 2n\pi \Rightarrow x - y = 2n\pi
\boxed{x - y = 2n\pi \quad \text{for } n \in \mathbb{Z}}
What is the probability that they contradict each other while narrating an incident?
Total probability of contradiction: P(\text{Contradiction}) = 0.2 + 0.3 = \boxed{0.5}
\boxed{\frac{1}{2}}
\boxed{ \vec{OP} = \left( \frac{-1}{\sqrt{2}},\ \frac{7}{\sqrt{2}} \right) }
Let the number be x .
So, x + 5 is divisible by LCM of 9, 10, 15, 20
LCM = 2^2 \cdot 3^2 \cdot 5 = 180
x + 5 = 180 \times 2 = 360 \Rightarrow x = 355
Question: Find the value of:
\sum_{r=1}^{n} \frac{nP_r}{r!}
Solution:
We know: nP_r = \frac{n!}{(n - r)!} \Rightarrow \frac{nP_r}{r!} = \frac{n!}{(n - r)! \cdot r!} = \binom{n}{r}
Therefore,
\sum_{r=1}^{n} \frac{nP_r}{r!} = \sum_{r=1}^{n} \binom{n}{r} = 2^n - 1
Final Answer: \boxed{2^n - 1}
Given: Two events A and B defined on sample space \Omega . We are to find the probability:
P\left((A \cap B^c) \cup (A^c \cap B)\right)
Step 1: This is the probability of events that are in exactly one of A or B (but not both), i.e., symmetric difference of A and B:
(A \cap B^c) \cup (A^c \cap B) = A \Delta B
Step 2: So, we use:
P(A \Delta B) = P(A) + P(B) - 2P(A \cap B)
Final Answer:
\boxed{P(A) + P(B) - 2P(A \cap B)}
Given: x^2 + 2y^2 = 3 \text{ and } x > y \text{ with } x, y \in \mathbb{Z}
Solutions to the equation are: \{(1,1), (1,-1), (-1,1), (-1,-1)\}
Among them, only (1, -1) satisfies x > y .
Answer: \boxed{1}
Given:
f\left(\frac{1 - x}{1 + x}\right) = x + 2
To Find: f(1)
Let \frac{1 - x}{1 + x} = 1 \Rightarrow x = 0
Then, f(1) = f\left(\frac{1 - 0}{1 + 0}\right) = 0 + 2 = 2
Answer: \boxed{2}
What can we say about the median of the combined set A \cup B ?
The combined median depends on the size and values of both sets.
Without that information, we only know that:
\text{Combined Median} \in [2, 4]
So, the exact median cannot be determined with the given data.
Favorable outcomes (odd heads):
Total favorable = 8 + 56 + 56 + 8 = 128
So, Probability = \frac{128}{256} = \boxed{\frac{1}{2}}
Given Function: f(x) = x^{2/3}(6 - x)^{1/3}
Correct Answer (False Statement): \boxed{\text{f is decreasing in } (6, \infty)}
Evaluate: \lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{1 - \cos x}
Step 1: Apply L'Hôpital's Rule (since it's 0/0):
First derivative: \frac{e^x + e^{-x} - 2}{\sin x}
Still 0/0 → Apply L'Hôpital's Rule again: \frac{e^x - e^{-x}}{\cos x}
Now, \lim_{x \to 0} \frac{1 - 1}{1} = 0
Final Answer: \boxed{0}
If one Arithmetic Mean (AM) a and two Geometric Means p and q are inserted between any two positive numbers, find the value of: p^3 + q^3
pq = \sqrt[3]{A^2B} \cdot \sqrt[3]{AB^2} = \sqrt[3]{A^3B^3} = AB
p^3 = A^2B, \quad q^3 = AB^2
p^3 + q^3 = A^2B + AB^2 = AB(A + B)
2apq = 2 \cdot \frac{A + B}{2} \cdot AB = AB(A + B)
\boxed{p^3 + q^3 = 2apq}
Given the equation: Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0
Compute: \Delta = B^2 - 4AC
For the equation: 3x^2 + 10xy + 11y^2 + 14x + 12y + 5 = 0
A = 3 , B = 10 , C = 11 →
\Delta = 10^2 - 4(3)(11) = 100 - 132 = -32
Since \Delta < 0 , it represents an ellipse.
Points: A = (1, \frac{1}{2}) , B = (3, -\frac{1}{2})
Line: 2x + 3y = k
For A: 2(1) + 3\left(\frac{1}{2}\right) = \frac{7}{2}
For B: 2(3) + 3\left(-\frac{1}{2}\right) = \frac{9}{2}
The correct statements are:
A crate is pulled 25 m along a dock with a force of 180 N at an angle of 45°.
\text{Work} = F \cdot d \cdot \cos(\theta)
W = 180 \times 25 \times \cos(45^\circ) = 180 \times 25 \times 0.70710678118 = 3181.98052\, \text{J}
\boxed{3.181\times 10^3 \, \text{Joules}}
\vec{A} = (2x + 1)\hat{i} + (x^2 - 6y)\hat{j} + (xy^2 + 3z)\hat{k}
\nabla \cdot \vec{A} = 2 - 6 + 3 = -1 \neq 0
Not solenoidal ❌
\nabla \times \vec{A} = (2xy)\hat{i} - (y^2)\hat{j} + (2x)\hat{k} \neq \vec{0}
Not conservative ❌
\vec{A} is neither conservative nor solenoidal.
Given vector field:
\vec{A} = (2x + 1)\hat{i} + (x^2 - 6y)\hat{j} + (xy^2 + 3z)\hat{k}
\nabla \cdot \vec{A} = 2 - 6 + 3 = -1
The divergence is negative at every point, so \vec{A} is a sink field.
Given: R = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 4 \} in the first quadrant
Area of region R in first quadrant: A = \frac{1}{4} \pi (2)^2 = \pi
Region where r > s (i.e., below line x = y ) occupies half of that quarter-circle: A_{\text{favorable}} = \frac{1}{2} \pi
Therefore, the required probability is:
\text{Probability} = \frac{\frac{1}{2} \pi}{\pi} = \boxed{\frac{1}{2}}
Given:
\text{Total line pairs: } \binom{10}{2} = 45
\text{Subtract parallel pairs: } \binom{5}{2} = 10 \Rightarrow 45 - 10 = 35
\text{Concurrent at one point: reduce } 10 \text{ pairs to 1 point} \Rightarrow 35 - 9 = \boxed{26}
The line a^2x + ay + 1 = 0 is normal to the curve xy = 1 . Find possible values of a \in \mathbb{R} .
Rewrite: y = -a x - \frac{1}{a} → slope = -a
xy = 1 \Rightarrow \frac{dy}{dx} = -\frac{y}{x} Slope of normal = \frac{x}{y}
-a = \frac{x}{y} \Rightarrow x = -a y
xy = 1 \Rightarrow (-a y)(y) = 1 \Rightarrow y^2 = -\frac{1}{a}
For real y , we need a < 0
\boxed{a < 0}
Given:
We use the inclusion-exclusion principle:
|M \cup P \cup C| = |M| + |P| + |C| - |M \cap P| - |M \cap C| - |P \cap C| + |M \cap P \cap C|
Let x = |M \cap P \cap C| . Then:
50 \geq 37 + 24 + 43 - 19 - 29 - 20 + x \Rightarrow 50 \geq 36 + x \Rightarrow x \leq 14
Function:
f(x) = \begin{cases} \dfrac{x}{e^{\pi x} - 1}, & x \neq 0 \\ \dfrac{1}{\pi}, & x = 0 \end{cases}
\lim_{x \to 0} f(x) = \frac{1}{\pi} = f(0) \quad \Rightarrow \quad \text{Function is continuous at } x = 0
f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = -\frac{1}{2}
Given:
f(x) = \cos\left([\pi^2]x\right) + \cos\left([-\pi^2]x\right)
Find: f\left(\frac{\pi}{2}\right)
\pi^2 \approx 9.8696 \Rightarrow [\pi^2] = 9,\quad [-\pi^2] = -10
f\left(\frac{\pi}{2}\right) = \cos\left(9 \cdot \frac{\pi}{2}\right) + \cos\left(-10 \cdot \frac{\pi}{2}\right) = \cos\left(\frac{9\pi}{2}\right) + \cos(-5\pi)
\cos\left(\frac{9\pi}{2}\right) = 0,\quad \cos(-5\pi) = -1
\boxed{-1}
Total numbers divisible by 6 from 1 to 100: 16
\binom{100}{3} = 161700, \quad \binom{16}{3} = 560
Probability: \frac{560}{161700} = \frac{4}{1155}
Given:
Use empirical formula:
\text{Mode} = 3 \cdot \text{Median} - 2 \cdot \text{Mean}
9^x = 3 \cdot 3^x - 2 \Rightarrow (3^x)^2 = 3 \cdot 3^x - 2
Let y = 3^x , then:
y^2 = 3y - 2 \Rightarrow y^2 - 3y + 2 = 0 \Rightarrow (y - 1)(y - 2) = 0
So, y = 1 \text{ or } 2 \Rightarrow 9^x = y^2 = 1 \text{ or } 4
S = \frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \cdots = \sum_{n=1}^{\infty} \frac{2n}{(2n+1)!}
This is a known convergent series, and its sum is:
\boxed{e^{-1}}
np = 4
npq = 2
q = 1/2, p = 1/2, n = 8
p(X = 1) = 8C1 (1/2)(1/2)7
Class Interval | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency | 180 | f_1 | 34 | 180 | 136 | f_2 | 50 |
Size of item | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Frequency | 3 | 6 | 9 | 13 | 8 | 5 | 4 |
Total number of items in the distribution = Σ fi = 3 + 6 + 9 + 13 + 8 + 5 + 4 = 48.
The Mean (x̅) of the given set = \rm \dfrac{\sum f_i x_i}{\sum f_i}.
⇒ x̅ = \rm \dfrac{6\times3+7\times6+8\times9+9\times13+10\times8+11\times5+12\times4}{48}=\dfrac{432}{48} = 9.
Let's calculate the variance using the formula: \rm \sigma^2 =\dfrac{\sum x_i^2}{n}-\bar x^2.
\rm \dfrac{\sum {x_i}^2}{n}=\dfrac{6^2\times3+7^2\times6+8^2\times9+9^2\times13+10^2\times8+11^2\times5+12^2\times4}{48}=\dfrac{4012}{48} = 83.58.
∴ σ2 = 83.58 - 92 = 83.58 - 81 = 2.58.
And, Standard Deviation (σ) = \rm \sqrt{\sigma^2}=\sqrt{Variance}=\sqrt{2.58} ≈ 1.607.
Given: Perimeter = 6 × Arithmetic Mean of sin A, sin B, sin C
Using Law of Sines: \frac{a}{\sin A} = 2R , and a = 1 ⇒ \sin A = \frac{1}{2R}
Assume A = 30^\circ \Rightarrow \sin A = \frac{1}{2} \Rightarrow 2R = 2
⇒ b = 2 sin B, c = 2 sin C
Perimeter = 1 + b + c = 1 + 2 \sin B + 2 \sin C
Mean = \frac{\sin A + \sin B + \sin C}{3}
Check: 1 + 2\sin B + 2\sin C = 6 \cdot \frac{1/2 + \sin B + \sin C}{3} ✅
✅ Final Answer: 30°
Total Papers: 9
Condition for Success: Passes > Fails
So, candidate is unsuccessful when: Passes ≤ 4
Calculate ways:
\text{Ways} = \sum_{x=0}^{4} \binom{9}{x} = \binom{9}{0} + \binom{9}{1} + \binom{9}{2} + \binom{9}{3} + \binom{9}{4} = 1 + 9 + 36 + 84 + 126 = \boxed{256}
✅ Final Answer: 256 ways
Original Mean: 40, Standard Deviation: 15
Two scores were misread: 25 → 52 and 35 → 53
Corrected Mean:
\mu' = \frac{3955}{100} = \boxed{39.55}
Corrected Standard Deviation:
\sigma' = \sqrt{\frac{178837}{100} - (39.55)^2} \approx \boxed{14.96}
✅ Final Answer: Mean = 39.55, Standard Deviation ≈ 14.96
Class interval | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency | 180 | f_1 | 34 | 180 | 136 | f_2 | 50 |
Given: Median = 42.6, Total Frequency = 685
Using Median Formula:
\text{Median} = L + \left( \frac{N/2 - F}{f} \right) \cdot h
Substituting values:
42.6 = 40 + \left( \frac{128.5 - f_1}{180} \right) \cdot 10 \Rightarrow f_1 = \boxed{82}
Using total frequency:
662 + f_2 = 685 \Rightarrow f_2 = \boxed{23}
✅ Final Answer: f_1 = 82,\quad f_2 = 23
Given: f(x) = x^3 + 3x - 9
The sum of infinite GP = max value of f(x) on [−2, 3]
The difference between first two terms = f'(0)
Step 1: f(x) is increasing ⇒ Max at x = 3
f(3) = 27 \Rightarrow \frac{a}{1 - r} = 27
Step 2: f'(x) = 3x^2 + 3 \Rightarrow f'(0) = 3
⇒ a(1 - r) = 3
Step 3: Solve:
a = 27(1 - r)
\Rightarrow 27(1 - r)^2 = 3 \Rightarrow (1 - r)^2 = \frac{1}{9} \Rightarrow r = \frac{2}{3}
✅ Final Answer: r = \frac{2}{3}
Given Equation: x^2 + 2x - 4y^2 + 8y - 7 = 0
Step 1: Complete the square
⇒ (x + 1)^2 - 4(y - 1)^2 = 4
Rewriting: \frac{(x + 1)^2}{4} - \frac{(y - 1)^2}{1} = 1
This is a horizontal hyperbola with:
✅ Foci: (-1 \pm \sqrt{5},\ 1)
Given Parabola: y^2 = 4x
Condition: Chords pass through the vertex (0, 0)
Let the other end of the chord be (x_1, y_1) , so the midpoint is:
M = \left( \frac{x_1}{2}, \frac{y_1}{2} \right) = (h, k)
Since the point lies on the parabola: y_1^2 = 4x_1
⇒ (2k)^2 = 4(2h)
⇒ 4k^2 = 8h
⇒ \boxed{k^2 = 2h}
✅ Locus of midpoints: y^2 = 2x
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.